BAYESIAN REASONING

Home


Projektpartner


Teilprojekte

  1. TrainBayes (DFG)


Publikationen



 
 

2020

  • Eichler, A., Böcherer-Linder, K., & Vogel, M. (2020). Different Visualizations Cause Different Strategies When Dealing With Bayesian Situations. Frontiers in Psychology, 11(1897).https://doi.org/10.3389/fpsyg.2020.01897
  • Binder, K. (2020). Statistische "Fake News". Pädagogische Führung, 4, 142-145.
  • Binder, K., Krauss, S., & Steib, N. (2020). Bedingte Wahrscheinlichkeiten und Schnittwahrscheinlichkeiten GLEICHZEITIG visualisieren: Das Häufigkeitsnetz. Stochastik in der Schule, 40(2), 2-14.
  • Binder, K., Krauss, S., & Wiesner, P. (2020). A new visualization for probabilistic situations containing two binary events: The frequency net. Frontiers in Psychology, 11(750).https://www.frontiersin.org/articles/10.3389/fpsyg.2020.00750/full
  • Krauss, S., Weber, P., Binder, K., & Bruckmaier, G. (2020). Natürliche Häufigkeiten als numerische Darstellungsart von Anteilen und Unsicherheit – Forschungsdesiderate und einige Antworten. Journal für Mathematikdidaktik.https://link.springer.com/article/10.1007/s13138-019-00156-w

2019

  • Binder, K., & Braun, L. (2019). Erhöhung der ärztlichen Diagnoseschnelligkeit durch natürliche Häufigkeiten. In A. Frank, S. Krauss & K. Binder (Hrsg.), Beiträge zum Mathematikunterricht 2019 (S. 1183-1186). Münster: WTM.
  • Binder, K., Krauss, S., & Wassner, C. (2019). Der Häufigkeitsdoppelbaum - Anteilswerte und bedingte Wahrscheinlichkeiten vorteilhaft visualisieren. mathematik lehren, 213, 12-17.
  • Binder, K., Weber, P. & Krauss, S. (2019). Visualisierungen als Begründungshilfen in der Stochastik. In N. von Schroeders (Hrsg), Argumentieren, Begründen, Beweisen. MaMut - Materialien für den Mathematikunterricht, 7 (S. 35-61).Hildesheim: Franzbecker.
  • Binder, K., & Wild, J. (2019). "Wer könnte von der Torte genascht haben?" Durch Ordnen Wahrscheinlichkeiten im Märchenland entdecken. Praxis Grundschule, 4, 36-42.
  • Böcherer-Linder, K., & Binder, K. (2019). Minisymposium "Stochastik unterrichten". In A. Frank, S. Krauss & K. Binder (Hrsg.), Beiträge zum Mathematikunterricht 2019 (S. 1181-1182). Münster: WTM.
  • Böcherer-Linder, K., & Eichler, A. (2019). How to Improve Performance in Bayesian Inference Tasks: A Comparison of Five Visualizations. Frontiers in Psychology, 10, 297. https://doi.org/10.3389/fpsyg.2019.00267
  • Bruckmaier, G., Binder, K., & Krauss, S. (2019). Strategien beim Lösen statistischer Aufgaben – Eine Eyetracking-Studie zur visuellen Durchmusterung von Baumdiagrammen und Vierfeldertafeln. In A. Frank, S. Krauss & K. Binder (Hrsg.), Beiträge zum Mathematikunterricht 2019 (S. 1235-1238). Münster: WTM.
  • Bruckmaier, G. Binder, K., Krauss, S., & Kufner, H. (2019). An eye-tracking study of statistical reasoning with tree diagrams and 2×2 tables. Frontiers in Psychology, 10(632). https://www.frontiersin.org/articles/10.3389/fpsyg.2019.00632/full
  • Eichler, A., Gehrke, C., Böcherer-Linder, K. & Vogel, M. (2019). A training in visualizing statistical data with the unit square. In U. T. Jankvist, M. Van den Heuvel-Panhuizen & M. Veldhuis, M. (Eds.), Proceedings of the Eleventh Congress of the European Society for Research in Mathematics Education (CERME11, February 6 – 10, 2019). Utrecht, the Netherlands: Freudenthal Group & Freudenthal Institute, Utrecht University and ERME.

2018

  • Binder, K., Krauss, S., Bruckmaier, G. & Marienhagen, J. (2018). Visualizing the Bayesian 2-test case: The effect of tree diagrams on medical decision making. PLoS ONE, 13(3).https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0195029
  • Binder, K., Krauss, S., Bruckmaier, G., & Marienhagen, J. (2018). T(h)ree steps to improve Bayesian reasoning. In, Proceedings of the 10th International Conference on Teachings Statistics (ICOTS-10). Kyoto, Japan.
  • Binder, K., Krauss, S. & Wassner, C. (2018). Der Häufigkeitsdoppelbaum als didaktisch hilfreiches Werkzeug von der Unterstufe bis zum Abitur. Stochastik in der Schule, 38(1), 2-11.
  • Binder, K., & Vogel, M. (2018). Prä-Bayes'sche Verhältnisse. mathematik lehren, 209, 13-17.
  • Böcherer-Linder, K., Eichler, A. & Vogel, M. (2018). Die Formel von Bayes: Kognitionspsychologische Grundlagen und empirische Untersuchungen zur Bestimmung von Teilmenge-Grundmenge-Beziehungen. Journal für Mathematik-Didaktik, 30(3), 241. https://doi.org/10.1007/s13138-018-0128-1
  • Böcherer-Linder, K., Eichler, A. & Vogel, M. (2018). Visualizing statistical information with unit squares. In A. M. Sorto, A. White, & L. Guyot (Eds.), Looking back, looking forward. Proceedings of the 10th International Conference On Teaching Statistics. Kyoto, Japan: IASE.
  • Eichler, A. & Böcherer-Linder, K. (2018). Categorizing Errors in Bayesian Situations. In A. M. Sorto, A. White, & L. Guyot (Eds.), Looking back, looking forward. Proceedings of the 10th International Conference On Teaching Statistics . Kyoto, Japan: IASE.
  • Weber, P., Binder, K., & Krauss, S. (2018). Why can only 24% solve Bayesian reasoning problems in natural frequencies? Frequency phobia in spite of probability blindness. Frontiers in Psychology, 9(1833).https://www.frontiersin.org/articles/10.3389/fpsyg.2018.01833/full
  • Weber, P., Binder, K., & Krauss, S. (2018). Frequency phobia in spite of probability blindness. In, Proceedings of the 10th International Conference on Teachings Statistics (ICOTS-10). Kyoto, Japan.

2017

  • Binder, K. & Marienhagen, J. (2017). Bayes'sches Denken - Schritt für Schritt: Mit Häufigkeiten und Baumdiagrammen Einsichten in komplexe Probleme ermöglichen. In R. Vonthein, I. Burkholder, R. Muche & G. Rauch (Hrsg.), Zeig mir mehr Biostatistik (S. 87-99). Heidelberg: Springer.
  • Böcherer-Linder, K. & Eichler, A. (2017). The Impact of Visualizing Nested Sets. An empirical Study on Tree Diagrams and Unit Squares. Frontiers in Psychology, Cognition, 7:2026. https://doi.org/10.3389/fpsyg.2016.02026
  • Böcherer-Linder, K., Eichler, A. & Vogel, M. (2017). The impact of visualization on flexible Bayesian reasoning. Avances de Investigación en Educación Matemática 11. https://doi.org/10.35763/aiem.v1i11.169
  • Böcherer-Linder, K., Eichler, A. & Vogel, M. (2017). Representing subset relations with tree diagrams or unit squares? In T. Dooley & G. Gueudet (Hrsg.), Proceedings of the Tenth Congress of the European Society for Research in Mathematics Education (CERME10, February 1 – 5, 2017). Dublin, Ireland: DCU Institute of Education and ERME.
  • Böcherer-Linder, K., Eichler, A., Leuders, T. (2017). Anteile und Wahrscheinlichkeiten darstellen – das Einheitsquadrat als Visualisierung nach dem Spiralprinzip. Der Mathematikunterricht 63 (6), S. 11-18.

2015

  • Binder, K., Krauss, S. & Bruckmaier, G. (2015). Effects of visualizing statistical information – An empirical study on tree diagrams and 2 x 2 tables. Frontiers in Psychology, 6(1186).https://www.frontiersin.org/articles/10.3389/fpsyg.2015.01186/full
  • Böcherer-Linder, K., Eichler, A. & Vogel, M. (2015). Understanding conditional probability through visualization. In H. Oliveira, A. Henriques, A. P. Canavarro, C. Monteiro, C. Carvalho, J. P. Ponte, R. T. Ferreira & S. Colaço (Eds.), Proceedings of the International Conference Turning data into knowledge: New opportunities for statistics education. Lisbon, Portugal: Instituto de Educação da Universidade de Lisboa.
  • Hoffrage, U., Krauss, S., Martignon, L., & Gigerenzer, G. (2015). Natural Frequencies Improve Bayesian Reasoning in Simple and Complex Inference Tasks. Frontiers in Psychology, 6(1473).https://www.frontiersin.org/articles/10.3389/fpsyg.2015.01473/full

2014

  • Krauss, S., & Bruckmaier, G. (2014). Eignet sich die Formel von Bayes für Gerichtsverfahren? In U. Sproesser, S. Wessolowski, C. Wörn (Hrsg.). Daten, Zufall und der Rest der Welt – Didaktische Perspektiven zur anwendungsbezogenen Mathematik (S. 123-132). Wiesbaden: Springer.
  • Sturm, A. & Eichler, A. (2014). Students’ beliefs about the benefit of statistical knowledge hwne perceiving information through daily media. In K. Makar, B. de Sousa, & R. Gould (Eds.), Sustainability in statistics education. Proceedings of the Ninth International Conference on Teaching Statistics (ICOTS9, July, 2014), Flagstaff, Arizona, USA. Voorburg, The Netherlands: International Statistical Institute.

2013

  • Eicher, A. & Vogel, M. (2013). Die Leitidee Daten und Zufall. Wiesbaden: Vieweg+Teubner (2., akt. Auflage).

2010

  • Eichler, A. & Vogel, M. (2010). Die (Bild-)Formel von Bayes. PM - Praxis der Mathematik in der Schule, 52(32), S. 25-30.

2003

  • Krauss, S. (2003). Wie man das Verständnis von Wahrscheinlichkeiten verbessern kann: Das „Häufigkeitskonzept”. Stochastik in der Schule, 23(1), 2-9.

2002

  • Wassner, C., Krauss, S., & Martignon, L. (2002). Muss der Satz von Bayes schwer verständlich sein? Praxis der Mathematik, 44(1), 12-16.

2000

  • Hoffrage, U., Gigerenzer, G., Krauss, S., & Martignon, L. (2002). Representation Facilitates Reasoning: What Natural Frequencies Are and What They Are Not. Cognition, 84(3), 343-352.